The Crystal Structure of $\mathbf{V}_{3} \mathbf{O}_{7}$

By Kjell Waltersson, Bertil Forslund and Karl-Axel Wilhelmi
Department of Inorganic Chemistry, Arrhenius Laboratory, University of Stockholm, Fack, S-104 05 Stockholm, Sweden

Sten Andersson
Institute of Technology, Chemical Centre, Department of Inorganic Chemistry, Box 740, S-220 07 Lund 7, Sweden
and Jean Galy
Service de Chimie Minérale de la Faculté des Sciences de Bordeaux, associé au CNRS, 351 cours de la Libération, 33-Talence, France

(Received 25 April 1974; accepted 23 June 1974)
The crystal structure of $\mathrm{V}_{3} \mathrm{O}_{7}$ has been determined from three-dimensional X-ray diffractometer data (Mo $K \alpha$ radiation). The monoclinic unit cell, space group $C 2 / c$ (No. 15), has the dimensions $a=$ 21.921 (3), $b=3.679$ (1), $c=18.341$ (2) \AA, and $\beta=95.61^{\circ}(1) ; V=1472 \cdot 1 \AA^{3}$. Least-squares refinement reached $R_{w}=0.029$ for 1533 measured independent reflexions for which $\sigma\left(F_{o}\right) /\left|F_{o}\right| \leq 0 \cdot 20$. The unit cell contains 12 formula units of $\mathrm{V}_{3} \mathrm{O}_{7} .12$ vanadium atoms have octahedral coordination of oxygen atoms, 16 are inside trigonal bipyramids and eight in square pyramids. The polyhedra are joined by corner- and edge-sharing to form a three-dimensional framework. The average $\mathrm{V}-\mathrm{O}$ distances for the six- and fivecoordinated metal atoms are 1.943 and $1.825 \AA$, respectively. Magnetic susceptibility measurements are in agreement with the formulation $\mathrm{V}^{4+} \mathrm{V}_{2}^{5+} \mathrm{O}_{7}$.

Introduction

The atomic positions in the structure of $\mathrm{V}_{6} \mathrm{O}_{13}$ were recently refined by Wilhelmi, Waltersson \& Kihlborg (1971). The structure proposed by Aebi (1948) was confirmed.

The preparation of $\mathrm{V}_{3} \mathrm{O}_{7}$, another intermediate in composition between $\mathrm{V}_{2} \mathrm{O}_{5}$ and VO_{2}, was reported some years ago (Tudo \& Tridot, 1965; Thomas, Tudo \& Tridot, 1967). A preliminary note published by Andersson, Galy \& Wilhelmi (1970) gave a structure derived from film data. The structure of the new oxide has now been refined, using single-crystal data collected with an automatic diffractometer.

Experimental

Preparation and determination of cell dimensions

The starting materials were divanadium pentoxide (p.a. LKB-Produkter, Stockholm, Sweden) and pure divanadium trioxide, obtained by reduction of $\mathrm{V}_{2} \mathrm{O}_{5}$ with hydrogen.

Polycrystalline samples of $\mathrm{V}_{3} \mathrm{O}_{7}$ were prepared from relatively large amounts (about 25 g) of $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{V}_{2} \mathrm{O}_{3}$ in sealed evacuated Vycor tubes at $550^{\circ} \mathrm{C}$. After several heat treatments with intervening grindings the powder photographs of the final products contained only lines belonging to $\mathrm{V}_{3} \mathrm{O}_{7}$ (see below). Powder photographs of samples tempered above $600^{\circ} \mathrm{C}$ indicated that $\mathrm{V}_{6} \mathrm{O}_{13}$ was also present in small amounts.

The powder photographs were taken with a GuinierHägg camera at $20^{\circ} \mathrm{C}$, using $\mathrm{Cu} K \alpha_{1}$ radiation and potassium chloride as internal standard ($a=6 \cdot 2930 \AA$;

Table 1. Powder pattern of $\mathrm{V}_{3} \mathrm{O}_{7}$ $\mathrm{Cu} K \alpha_{1}$ radiation ($\lambda=1 \cdot 54050 \AA$).

h	k	l	$d_{\text {obs }}$	$10^{5} \sin ^{2} \theta_{\text {obs }}$	$10^{5} \sin ^{2} \theta_{\text {calc }}$	$I_{\text {obs }}$
2	0	0	10.89	500	499	$v v w$
4	0	0	$5 \cdot 451$	1997	1994	$v v w$
0	0	4	$4 \cdot 557$	2857	2849	$v w$
4	0	2	$4 \cdot 488$	2945	2940	\boldsymbol{w}
2	0	4	4.069	3584	3581	m
6	0	0	3.638	4484	4488	m
1	1	-1	$3 \cdot 568$	4659	4657	vs
6	0	-2	$3 \cdot 499$	4845	4850	\boldsymbol{w}
0	0	6	3.042	6410	6410	m
2	0	-6	3.008	6555	6559	m
3	1	-3	2.945	6842	6846	m
2	0	6	2.859	7256	7259	w
3	1	3	$2 \cdot 837$	7370	7371	\boldsymbol{w}
6	0	4	2.716	8040	8036	$v v w$
5	1	-3	$2 \cdot 617$	8663	8665	$v v w$
1	1	-5	$2 \cdot 595$	8812	8814	$v w$
1	1	5	$2 \cdot 552$	9108	9106	s
3	1	-5	$2 \cdot 496$	9519	9520	vvw
6	0	-6	$2 \cdot 455$	9845	9848	m
7	1	-1	$2 \cdot 3815$	10461	10466	vow
10	0	0	2.1823	12457	12465	w
8	0	-6	2.1364	12999	12989	vvw
1	1	7	2.1024	13423	13438	vow
3	1	-7	$2 \cdot 0878$	13611	13619	$v v^{w}$
10	0	2	2.0750	13779	13761	$v v w$
6	0	-8	$2 \cdot 0232$	14494	14485	$v v w$
7	1	5	1.9278	15964	15964	$v v w$
6	0	8	1.8529	17282	17283	$v w$
0	2	0	1.8398	17527	17535	vs
0	0	10	$1 \cdot 8251$	17811	17807	s
4	0	-10	1.7837	18647	18635	m
12	0	2	1.7508	19354	19362	$v w$
4	2	2	$1 \cdot 7025$	20468	20475	$v w$
5	1	-9	1.6967	20610	20612	vw
2	2	4	$1 \cdot 6757$	21129	21116	$v w$
6	2	0	$1 \cdot 6412$	22025	22023	m
6	2	-2	$1 \cdot 6280$	22384	22385	vow

Hambling, 1953). Refinement of the cell dimensions was performed by the method of least squares. The indexed powder pattern is listed in Table 1; the cell parameters are $a=21.921$ (3), $b=3.679$ (1), $c=$ 18.341 (2) \AA and $\beta=95.61$ (1) ${ }^{\circ}$.

The density of the crystals, $3.61 \mathrm{~g} \mathrm{~cm}^{-3}$, was determined from the loss of weight in benzene. This is in good agreement with a cell content of $12 \mathrm{~V}_{3} \mathrm{O}_{7}$ formula units in the cell ($d_{\text {calc }}=3.58 \mathrm{~g} \mathrm{~cm}^{-3}$).

Portions of a well homogenized polycrystalline sample ($1-2 \mathrm{mg}$) prepared at $550^{\circ} \mathrm{C}$ were analysed for oxygen according to a method described by Danielsson, Jonsson \& Wilhelmi (1971). The oxygen content was found (mean value of ten runs) to be 42.26% (calculated value for $\mathrm{V}_{3} \mathrm{O}_{7}=42 \cdot 290 \%$).

Single crystals of $\mathrm{V}_{3} \mathrm{O}_{7}$ were prepared by treating mixtures ($100-200 \mathrm{mg}$) of divanadium pentoxide and divanadium trioxide, having the gross composition $\mathrm{VO}_{2 \cdot 333}$, with water in small sealed gold tubes in an autoclave for 3 days at $550^{\circ} \mathrm{C}$ and 200 MPa (2 kbar) (cf. Andersson, 1967). The product contained well shaped black prismatic crystals together with small amounts of $\mathrm{V}_{2} \mathrm{O}_{5}$. The cell dimensions of the product, derived from a powder photograph, were found to be the same as those given in Table 2, within the limits of error.

Table 2. The crystal structure of $\mathrm{V}_{3} \mathrm{O}_{7}$
Space group: $\quad C 2 / c$ (No. 15)
Unit-cell dimensions: $a=21.921$ (3) \AA
$b=3.679(1)$
$c=18.341$ (2)
$\beta=95.61$ (1) ${ }^{\circ}$
Unit-cell content:
$12 \mathrm{~V}_{3} \mathrm{O}_{7}$

	Point set	Numbering of the atoms	
4(e)	$0 \quad \bar{y}$	${ }^{\frac{3}{4}}$	$(n, 1)$
	$0 \quad y$	$\frac{1}{4}$	$(n, 2)$
	$\frac{1}{2}-y$	$\frac{3}{4}$	$(n, 3)$
	$\frac{1}{2} \quad \frac{1}{2}+y$	$\frac{1}{4}$	$(n, 4)$
$8(f)$	$x \quad y$	z	$(n, 1)$
	$\overline{\bar{x}} \quad \bar{y}$	\underline{z}	$(n, 2)$
	$\bar{x} \quad y$	$\frac{1}{2}-z$	$(n, 3)$
	$\boldsymbol{x} \quad \bar{y}$	$\frac{1}{2}+z$	$(n, 4)$
	$\frac{1}{2}+x \quad \frac{1}{2}+y$	z	$(n, 5)$
	$\frac{1}{2}-x \quad \frac{1}{2}-y$	\bar{z}	$(n, 6)$
	$\frac{1}{2}-x \quad \frac{1}{2}+y$	$\frac{1}{2}-z$	$(n, 7)$
	$\begin{array}{ll}\frac{1}{2}+x & \frac{1}{2}-y\end{array}$	$\frac{1}{2}+z$	$(n, 8)$

Data collection

A well shaped prismatic crystal with the dimensions: $0.0464(a) \times 0.1436$ (along the unique b axis) $\times 0.0530(c)$ mm was selected and mounted along the prism axis. Preliminary investigations by means of oscillation and Weissenberg photographs proved it to be suitable for diffraction work. A Siemens automatic four-circle diffractometer equipped with a scintillation counter of $\mathrm{NaI}(\mathrm{Tl})$ type and a pulse-height discriminator was used for data collection with niobium-filtered Mo $K \alpha$ radiation. The $\theta-2 \theta$ scan technique was employed, with the five-point measuring procedure. The scan range for the individual lattice points was given by the ex-
pressions: $-\Delta \theta=0.05+2 \operatorname{tg} \theta, \quad+\Delta \theta=0.19+2 \operatorname{tg} \theta$. The count was taken in 0.01° steps, with the maximum step time of 1.2 s . For strong reflexions the step time was automatically reduced in order to accelerate the data collection. In order to keep counting losses low for strong reflexions the automatic attenuator mechanism was set to add attenuation filters. Three standard reflexions were measured every second day in order to keep a running check on the crystal orientation.

An estimated standard deviation for the net intensity was obtained from the expression $\sigma(I)=\left(I_{b}+I_{t}\right)^{1 / 2}$, where I_{t} and I_{b} are the total and background counts. 2131 independent lattice points up to $\theta=30 \cdot 0^{\circ}$ were measured, of which 184 had a net count somewhat below the background count. Another 414 reflexions were judged insignificant for the refinement since they did not fulfil the criterion $\sigma\left(F_{o}\right) /\left|F_{o}\right| \leq 0 \cdot 20$. The number of non-equivalent reflexions remaining was 1533. These $\left|F_{o}\right|$ values were used in the refinement.
Lorentz, polarization and absorption corrections were then applied to the data. The linear absorption coefficient $\mu(\mathrm{Mo} K \alpha)=59 \cdot 3 \mathrm{~cm}^{-1}$ was used in calculating the absorption factor for each reflexion (International Tables for X-ray Crystallography, 1962). This was done by means of the Gaussian integration method, with $6 \times 10 \times 6$ gridpoints. The factor (A) in the formula $I=I_{\text {obs }} / A$ ranged from 0.716 to 0.779 .

The calculations were performed on IBM 1800 and IBM $360 / 75$ computers. The programs used are the same as those listed in the report on $\mathrm{V}_{6} \mathrm{O}_{13}$ (Wilhelmi, Waltersson \& Kihlborg, 1971).

Refinement

For the new Weissenberg photographs the observed systematic absences were the same as those reported by Andersson, Galy \& Wilhelmi (1971), indicating that the space groups $C 2 / c$ (No. 15) and $C c$ (No. 9) (International Tables for X-ray Crystallography, 1952) were possible. The approximate structure indicated in the drawing given in the short communication was used as a starting point for the refinement. The parameters were: 44 positional parameters, 16 individual isotropic temperature-factor coefficients, one scale factor and one secondary extinction parameter. The scattering factors used were for neutral atoms (McMaster, Kerr Del Grande, Mallett \& Hubbel, 1969), and the Δf^{\prime} and $\Delta f^{\prime \prime}$ values for Mo $K \alpha$ radiation were taken from International Tables for X-ray Crystallography (1962).
The quantity minimized in the least-squares refinement was

$$
\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} .
$$

The R value ($=\Sigma| | F_{o}\left|-\left|F_{c}\right| /\left|/ F_{o}\right|\right.$) dropped rapidly to 0.0353 . The weighted R_{w} value defined by the expression $R_{w}=\left(\sum w \Delta^{2}\right)^{1 / 2} /\left(\sum w F_{o}^{2}\right)^{1 / 2}$, was at this stage, $0 \cdot 0371$.
The isotropic temperature factors were in the range $0.35-0.67$ for the vanadium atoms and varied between 0.46 and 1.06 for the oxygen atoms.

The refinement was now continued with anisotropic temperature factors. This increased the number of parameters as 92 anisotropic temperature factors had to be calculated, compared with 16 in the isotropic case. The R value (anisotropic refinement) finally obtained was 0.0279 and the weighted R_{w} value was 0.0294 .*

The weights applied were calculated according to the formula

$$
w=\left(\sigma^{2}\left(\left|F_{o}\right|\right)+a+b\left|F_{o}\right|+c\left|F_{o}\right|^{2}+d\left|F_{o}\right|^{3}\right)^{-1}
$$

In the final cycle the constants were as follows:

$$
\begin{aligned}
& a=3 \cdot 0, b=-1 \cdot 0 \times 10^{-2}, c=-1 \cdot 0 \times 10^{-4} \\
& \quad \text { and } \quad d=3 \cdot 0 \times 10^{-6} .
\end{aligned}
$$

* The final F_{o}, F_{c} tables have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30551 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 3. Positional and thermal parameters
(a) Fractional coordinates

Atom (n)	Point set	x	y	z
V (1)	4(e)	0	$0 \cdot 81087$ (26)	
V(2)	$8(f)$	$0 \cdot 19549$ (3)	$0 \cdot 82011$ (15)	0.94140 (3)
V (3)	$8(f)$	0.03054 (2)	$0 \cdot 74814$ (17)	0.94466 (3)
V(4)	$8(f)$	$0 \cdot 16289$ (2)	0.74506 (17)	0.75467 (3)
V(5)	$8(f)$	$0 \cdot 32839$ (3)	0.74538 (17)	0.87378 (3)
O(1)	4(e)	0	0.2507 (12)	$\frac{3}{4}$
O(2)	$8(f)$	$0 \cdot 19225$ (11)	$0 \cdot 2588$ (7)	0.93942 (13)
$\mathrm{O}(3)$	$8(f)$	$0 \cdot 02324$ (11)	$0 \cdot 2502$ (7)	0.97363 (13)
$\mathrm{O}(4)$	$8(f)$	$0 \cdot 32613$ (12)	0.7456 (8)	0.76740 (13)
O(5)	$8(f)$	$0 \cdot 31591$ (11)	$0 \cdot 2463$ (7)	0.84644 (13)
O(6)	$8(f)$	$0 \cdot 20443$ (11)	$0 \cdot 7473$ (8)	0.83572 (13)
O(7)	$8(f)$	-0.00324 (11)	0.7516 (8)	0.85923 (13)
O(8)	$8(f)$	$0 \cdot 39756$ (11)	0.7436 (8)	0.90628 (14)
O(9)	$8(f)$	0.08991 (11)	0.7491 (9)	0.76677 (14)
O(10)	$8(f)$	$0 \cdot 10538$ (10)	0.7557 (8)	0.93727 (14)
O(11)	$8(f)$	$0 \cdot 28669$ (10)	0.7522 (8)	0.95186 (12)

An isotropic model of the thermal movements of the atoms can be rejected at less than the 0.005 level (Hamilton, 1965).

The positional and thermal parameters, together with their standard deviations, are shown in Table 3.

The e.s.d. for the positional parameters are all of reasonable magnitudes (see Table 3). No attempt was therefore made to continue the refinement in the noncentrosymmetric space group Cc (No. 9).

Description and discussion of the crystal structure

The crystal structure of $\mathrm{V}_{3} \mathrm{O}_{7}$ is shown in Fig. 1. The unit cell contains 36 vanadium atoms; 12 are inside octahedra and 24 are five-coordinated. It is convenient when discussing the structure to consider it as being composed of four different kinds of chains and strings which extend parallel to the b axis, viz.
I Single chains of $\mathrm{V}(1) \mathrm{O}_{6}$ octahedra linked by corners [Fig. 2(a)].
II Double chains of pairs of edge-sharing $\mathrm{V}(2) \mathrm{O}_{6}$ octahedra linked by corners [Fig. 2(b)].
III Zigzag strings of $\mathrm{V}(3) \mathrm{O}_{5}$ polyhedra joined by edges [Fig. 2(c)].
IV Zigzag strings of $\mathrm{V}(4) \mathrm{O}_{5}$ and $\mathrm{V}(5) \mathrm{O}_{5}$ polyhedra joined by edges [Fig. 2(d)].

The chains and strings are joined parallel to the $a c$ plane by additional common corners in a rather complicated way, to form a three-dimensional framework.

The structure elements I-IV will now be discussed in turn ($c f$. Table 4, which gives a survey of relevant $\mathrm{V}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{V}-\mathrm{O}$ angles).
I. Each $\mathrm{V}(1) \mathrm{O}_{6}$ octahedron has two vertices in common with other octahedra in the same chain and shares four corners with the structure elements III and IV. The metal atom is displaced $0.22 \AA$ from the equatorial plane formed by the atoms $\mathrm{O}(7,1), \mathrm{O}(7,3), \mathrm{O}(9,1)$ and $\mathrm{O}(9,3)$, forming a short $\mathrm{V}(1)-\mathrm{O}(1,1)$ distance of $1 \cdot 618 \AA$

Table 3 (cont.)
(b) Final anisotropic temperature factors defined as $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$. The values given are $\beta_{i j} \times 10^{5}$. Estimated standard deviations are given in parentheses. The r.m.s. components (R_{i}) of thermal displacement along the

Atom (n)	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	R_{1}	R_{2}	R_{3}	R
V (1)	25 (1)	1735 (67)	52 (2)	0	3 (1)	0	0.072	0.094	$0 \cdot 109$	$0 \cdot 106$
V(2)	19 (1)	376 (38)	33 (1)	3 (5)	3 (1)	3 (6)	0.051	0.062	0.078	$0 \cdot 113$
V(3)	17 (1)	547 (35)	35 (1)	-4 (6)	8 (1)	-3(7)	0.052	0.061	0.080	$0 \cdot 116$
V(4)	24 (1)	548 (35)	25 (1)	-3 (6)	4 (1)	-2 (7)	0.061	0.064	0.076	$0 \cdot 117$
V(5)	29 (1)	625 (36)	30 (1)	3 (5)	10 (1)	4 (6)	0.064	0.066	0.087	$0 \cdot 127$
$\mathrm{O}(1)$	74 (7)	984 (238)	67 (9)	0	6 (7)	0	0.082	0.106	$0 \cdot 134$	$0 \cdot 190$
O(2)	48 (5)	471 (156)	67 (6)	-29 (28)	4 (4)	19 (35)	0.055	$0 \cdot 106$	$0 \cdot 110$	$0 \cdot 162$
$\mathrm{O}(3)$	40 (5)	323 (158)	72 (6)	-23(25)	22 (4)	-16(30)	0.046	0.034	0.119	0.153
$\mathrm{O}(4)$	82 (5)	492 (157)	37 (6)	38 (27)	15 (5)	13 (30)	0.057	0.076	0.141	$0 \cdot 170$
$\mathrm{O}(5)$	55 (5)	386 (152)	48 (6)	22 (25)	24 (4)	10 (28)	0.051	0.075	$0 \cdot 123$	0.153
O(6)	47 (5)	1366 (171)	44 (6)	4 (29)	-5 (4)	51 (34)	0.078	$0 \cdot 100$	$0 \cdot 112$	0.169
O(7)	34 (4)	1530 (175)	57 (6)	-78(30)	3 (4)	-5 (35)	0.077	0.098	0.113	$0 \cdot 168$
$\mathrm{O}(8)$	32 (4)	2639 (195)	86 (7)	15 (28)	2 (4)	-16 (36)	0.088	0.121	0.135	0.201
O(9)	26 (4)	2246 (189)	93 (7)	-3 (32)	9 (4)	-41 (40)	0.078	$0 \cdot 119$	0.130	$0 \cdot 193$
O(10)	19 (4)	1124 (166)	102 (7)	-7 (27)	11 (4)	22 (37)	0.066	0.082	0.132	0.171
O(11)	18 (4)	1276 (161)	31 (6)	-39 (28)	4 (4)	91 (34)	$0 \cdot 050$	0.070	0.104	0.135

and a longer metal-oxygen separation of $2.061 \AA$. The latter distance is close to the mean value of the remaining four $\mathrm{V}-\mathrm{O}$ bond lengths in the $a c$ plane, the distance range being $1.978-2.023 \AA$ (mean value $2.00 \AA$). The $\mathrm{O}-\mathrm{O}$ edges are in the range 2.687 to $2.845 \AA$, mean value $2.74 \AA$.
II. The double chains of octahedra are composed of crystallographically identical $\mathrm{V}(2) \mathrm{O}_{6}$ octahedra; each octahedron has one edge and two vertices in common with other octahedra in the same chain. In addition each octahedron shares two oxygen atoms in the ac

Fig. 1. (a) The crystal structure of $\mathrm{V}_{3} \mathrm{O}_{7}$, projected on (010). Right-hand system with the positive b axis pointing downwards. The vanadium polyhedra at $y=\frac{1}{4}$ are drawn with heavy lines. (b) One part of the unit cell showing vanadiumoxygen polyhedra at $z=\frac{3}{4}$.
plane with the structure elements III and IV. The displacements of the metal atoms from the equatorial plane are $0.25 \AA$ in opposite directions. The $V(2)-V(2)$ distance across the shared edge is $3.097 \AA$. The O-O separations range from 2.502 (for a shared edge) to $2.996 \AA$, having in all a mean of $2.73 \AA$. A comparison of the distances for the vanadium-oxygen bonds in this structure element shows a distribution very similar to that observed in structure element I.
III. The structure element III, associated with the $\mathrm{V}(3)$ atoms, forms a zigzag string running along the b axis and consisting of five-coordination polyhedra which share $\mathrm{O}(3)-\mathrm{O}(3)$ edges and which are linked through $\mathrm{O}(7)$ and $\mathrm{O}(10)$ to the octahedral structural elements I and II. The atoms $\mathrm{O}(3), \mathrm{O}(7)$ and $\mathrm{O}(10)$ lie at the vertices of a triangle containing the vanadium atom. The sum of the three oxygen-vanadium-oxygen bond angles at $V(3)$ is exactly $360 \cdot 0^{\circ}$, which means that the vanadium atom is situated in the plane of the oxygens. The $\mathrm{V}-\mathrm{O}$ bond lengths in the triangle are: $\mathrm{V}-\mathrm{O}(3)=1.995, \mathrm{~V}-\mathrm{O}(7)=1.666, \mathrm{~V}-\mathrm{O}(10)=1.660 \AA$. The three different $\mathrm{V}(3)-\mathrm{O}(3)$ distances in the string differ very little, the range being 1.918-1.995 \AA (average $1.95 \AA$). The two $\mathrm{O}-\mathrm{O}$ distances involved in the edge-sharing have, within the limits of error, the same value (viz. $2 \cdot 354$ and $2.357 \AA$). The $\mathrm{V}(3) \mathrm{O}_{5}$ polyhedron can be described as a trigonal bipyramid.
IV. The structure element IV is composed of two crystallographically different $\mathrm{V}(4) \mathrm{O}_{5}$ and $\mathrm{V}(5) \mathrm{O}_{5}$ polyhedra, shown in Fig. 2(d) as trigonal bipyramids, joined together by edge-sharing to a zigzag string by the oxygen atoms $O(4)$ and $O(5)$. The six different distances between the vanadiums and the oxygens 4 and 5 , forming the string are in the range $1.902-1.956 \AA$. The average value, $1.92 \AA$, is close to that observed in structure element III. The mean value of the four short metal-oxygen separations is $1.66 \AA$, i.e. equal to the two short equatorial $\mathrm{V}-\mathrm{O}$ distances in structure element III. The $\mathrm{V}(5)-\mathrm{O}(8)$ bond, $1.574 \AA$, the shortest vanadium-oxygen separation observed in the structure, is significantly shorter than this average value; this is due to $O(8)$ being an unshared oxygen atom. An expected weakening of the $\mathrm{V}(5)-\mathrm{O}(11)$ bond, $1.773 \AA$, is also observed.

The two short $\mathrm{O}-\mathrm{O}$ separations which take part in the edge-sharing in structure element IV are very nearly of the same magnitude (2.364 and $2.368 \AA$) as in III.

The oxygen atoms which do not participate in edgesharing in structure elements III and IV are generally engaged in corner-sharing, in the ac plane, between adjacent chains. The environments of $\mathrm{O}(11)$ and $\mathrm{O}(8)$ differ markedly from each other. The former is bonded to three vanadium atoms and belongs to the $\mathrm{V}(5) \mathrm{O}_{5}$ polyhedron in structure element IV as well as to the pair of octahedra in the double chain II. The $O(8)$ atom belongs only to the $\mathrm{V}(5)$ atom. The difference is also reflected in one long $\mathrm{O}(4)-\mathrm{O}(11)$ separation ($3.573 \AA$) and two $\mathrm{O}-\mathrm{O}$ distances of normal length (2.647 and $2 \cdot 857 \AA$).

Fig. 2. The different structure elements in the $\mathrm{V}_{3} \mathrm{O}_{7}$ structure. The metal-oxygen and oxygen-oxygen distances are included. The thermal ellipsoids are drawn at 90% probability. (a) The single chain of $V(1) \mathrm{O}_{6}$ octahedra. (b) The double chain of $\mathrm{V}(2) \mathrm{O}_{6}$ octahedra. (c) The zigzag string of $\mathrm{V}(3) \mathrm{O}_{5}$ trigonal bipyramids. (d) The zigzag string of $\mathrm{V}(4) \mathrm{O}_{5}$ trigonal bipyramids and $\mathrm{V}(5) \mathrm{O}_{5}$ square pyramids.

K. WALTERSSON, B. FORSLUND, K.-A. WILHELMI, S. ANDERSSON AND J. GALY 2649

The angle between the planes formed by the oxygens $\mathrm{O}(5,7)^{\prime}-\mathrm{O}(4,7)-\mathrm{O}(11,7)$ and $\mathrm{O}(5,7)-\mathrm{O}(4,7)-\mathrm{O}(11,7)$ is 171° [see Fig. 2(d)]. The corresponding angles for the $\mathrm{V}(3) \mathrm{O}_{5}$ and $\mathrm{V}(4) \mathrm{O}_{5}$ polyhedra are 161 and 154°, respectively. It seems justified to describe the $\mathrm{V}(5) \mathrm{O}_{5}$ polyhedron as a square pyramid and the $\mathrm{V}(4) \mathrm{O}_{5}$ as a trigonal bipyramid, according to the external shape of the oxygen polyhedron.

Table 4. Interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ in $\mathrm{V}_{3} \mathrm{O}_{7}$
Estimated standard deviations in the last decimal place are given in parentheses. The atoms are numbered as in Table 2.
(a) Structure element I, the single chain of octahedra

| $\mathrm{V}(1,1)-\mathrm{O}(1,1)^{\prime}$ | $1.618(4)$ |
| ---: | ---: | ---: |
| $\mathrm{O}(9,1)$ | $1.978(2)$ |
| $\mathrm{O}(9,3)$ | $1.978(2)$ |
| $\mathrm{O}(7,1)$ | $2.023(2)$ |
| $\mathrm{O}(7,3)$ | $2.023(2)$ |
| $\mathrm{O}(1,1)$ | $2.061(4)$ |

$\mathrm{O}(1,1)-\mathrm{V}(1,1)$	-O(1,1) ${ }^{\prime}$	$179 \cdot 9$ (-)	3.679 (1)
$\mathrm{O}(1,1)$	O(7,1)	83.8 (1)	2.728 (4)
$\mathrm{O}(1,1)$	$\mathrm{O}(7,3)$	$83 \cdot 8$ (1)	2.728 (4)
$\mathrm{O}(1,1)$	O(9,1)	$83 \cdot 4$ (1)	$2 \cdot 687$ (4)
$\mathrm{O}(1,1)$	O $(9,3)$	$83 \cdot 4$ (1)	2.687 (4)
$\mathrm{O}(1,1)^{\prime}$	O(7,1)	$96 \cdot 2$ (1)	2.723 (4)
$\mathrm{O}(1,1)^{\prime}$	O $(7,3)$	$96 \cdot 2$ (1)	2.723 (4)
$\mathrm{O}(1,1)^{\prime}$	O(9,1)	96.6 (1)	2.695 (4)
$\mathrm{O}(1,1)^{\prime}$	O(9,3)	$96 \cdot 6$ (1)	$2 \cdot 695$ (4)
O(7,1)	O(7,3)	$167 \cdot 6$ (2)	4.023 (5)
O(7,1)	O(9,1)	88.0 (1)	2.779 (4)
O(7,1)	O(9,3)	$90 \cdot 6$ (1)	2.845 (4)
O(7,3)	O(9,1)	90.6 (1)	2.845 (4)
$\mathrm{O}(7,3)$	O(9,3)	88.0 (1)	2.779 (4)
$\mathrm{O}(9,1)$	$\mathrm{O}(9,3)$	$166 \cdot 8$ (2)	3.930 (5)

(b) Structure element II, the double chain of octahedra

$\mathrm{V}(2,1)-\mathrm{O}(2,1)^{\prime}$	$1.615(3)$
$\mathrm{O}(11,6)$	$1.977(2)$
$\mathrm{O}(10,1)$	$1.983(2)$
$\mathrm{O}(6,1)$	$1.985(2)$
$\mathrm{O}(11,1)$	$2.005(2)$
$\mathrm{O}(2,1)$	$2.066(3)$

$\mathrm{O}(2,1)-\mathrm{V}(2,1)-\mathrm{O}(2,1)^{\prime}$	$175 \cdot 2(2)$	$3 \cdot 679(1)$	
$\mathrm{O}(2,1)$	$\mathrm{O}(6,1)$	$81 \cdot 6(1)$	$2 \cdot 649(4)$
$\mathrm{O}(2,1)$	$\mathrm{O}(10,1)$	$81 \cdot 2(1)$	$2 \cdot 637(4)$
$\mathrm{O}(2,1)$	$\mathrm{O}(11,1)$	$84 \cdot 8(1)$	$2 \cdot 746(4)$
$\mathrm{O}(2,1)$	$\mathrm{O}(11,6)$	$83 \cdot 5(1)$	$2 \cdot 692(4)$
$\mathrm{O}(2,1)^{\prime}$	$\mathrm{O}(6,1)$	$97 \cdot 0(1)$	$2 \cdot 707(4)$
$\mathrm{O}(2,1)^{\prime}$	$\mathrm{O}(10,1)$	$94 \cdot 4(1)$	$2 \cdot 653(4)$
$\mathrm{O}(2,1)^{\prime}$	$\mathrm{O}(11,1)$	$99 \cdot 7(1)$	$2 \cdot 778(4)$
$\mathrm{O}(2,1)^{\prime}$	$\mathrm{O}(11,6)$	$99 \cdot 2(1)$	$2 \cdot 746(4)$
$\mathrm{O}(6,1)$	$\mathrm{O}(10,1)$	$98 \cdot 0(1)$	$2 \cdot 996(3)$
$\mathrm{O}(6,1)$	$\mathrm{O}(11,1)$	$83 \cdot 3(2)$	$2 \cdot 653(3)$
$\mathrm{O}(6,1)$	$\mathrm{O}(11,6)$	$156 \cdot 9(1)$	$3 \cdot 882(3)$
$\mathrm{O}(10,1)$	$\mathrm{O}(11,1)$	$165 \cdot 6(1)$	$3 \cdot 957(3)$
$\mathrm{O}(10,1)$	$\mathrm{O}(11,6)$	$97 \cdot 0(1)$	$2 \cdot 965(3)$
$\mathrm{O}(11,1)$	$\mathrm{O}(11,6)$	$77 \cdot 9(1)$	$2 \cdot 502(4)$

Metal-metal separations ($<3.500 \AA$)

$$
\begin{array}{rr}
\mathrm{V}(2,1)-\mathrm{V}(2,6) & 3 \cdot 097(1) \\
\mathrm{V}(5,1) & 3 \cdot 288(1) \\
\mathrm{V}(4,1) & 3 \cdot 440(1) \\
\mathrm{V}(5,6) & 3 \cdot 489(1)
\end{array}
$$

Table 4 (cont.)

(c) Structure element III, the zigzag string of trigonal bipyramids

| $\mathrm{V}(3,1)-\mathrm{O}(10,1)$ | $1.660(2)$ |
| ---: | :---: | ---: |
| $\mathrm{O}(7,1)$ | $1.666(2)$ |
| $\mathrm{O}(3,1)$ | $1.918(3)$ |
| $\mathrm{O}(3,1)^{\prime}$ | $1.933(3)$ |
| $\mathrm{O}(3,2)$ | $1.995(2)$ |
| $\mathrm{V}(3,1) \cdots(8,6)$ | $3.019(3)$ |

Bond angles Distances between

		at $\mathrm{V}(3,1)$	the oxygen atoms
$\mathrm{O}(3,1)-\mathrm{V}(3,1)-\mathrm{O}(3,1)^{\prime}$	$145 \cdot 6(1)$	$3 \cdot 679(1)$	
$\mathrm{O}(3,1)$	$\mathrm{O}(3,2)$	$73 \cdot 9(1)$	$2 \cdot 354(5)$
$\mathrm{O}(3,1)$	$\mathrm{O}(7,1)$	$103 \cdot 1(1)$	$2 \cdot 811(4)$
$\mathrm{O}(3,1)$	$\mathrm{O}(0,1)$	$98 \cdot 6(1)$	$2 \cdot 717(4)$
$\mathrm{O}(3,1)^{\prime}$	$\mathrm{O}(3,2)$	$73 \cdot 7(1)$	$2 \cdot 357(5)$
$\mathrm{O}(3,1)^{\prime}$	$\mathrm{O}(7,1)$	$102 \cdot 1(1)$	$2 \cdot 805(4)$
$\mathrm{O}(3,1)^{\prime}$	$\mathrm{O}(10,1)$	$96.6(1)$	$2 \cdot 689(4)$
$\mathrm{O}(3,2)$	$\mathrm{O}(7,1)$	$117.7(1)$	$3 \cdot 139(3)$
$\mathrm{O}(3,2)$	$\mathrm{O}(10,1)$	$136 \cdot 3(1)$	$3 \cdot 395(3)$
$\mathrm{O}(7,1)$	$\mathrm{O}(10,1)$	$106 \cdot 0(1)$	$2 \cdot 656(3)$
$\mathrm{O}(7,1) \cdots \mathrm{V}(3,1) \cdots \mathrm{O}(8,6)$	$174 \cdot 8(1)$	$4 \cdot 681(4)$	

Metal-metal separations ($<3.50 \AA$)

$$
\begin{array}{ll}
\mathrm{V}(3,1)-\mathrm{V}(3,2) & 3 \cdot 127(1) \\
\mathrm{V}(3,1)-\mathrm{V}(3,2)^{\prime} & 3 \cdot 143(1)
\end{array}
$$

(d) Structure element IV, the zigzag string of trigonal bipyramids and square pyramids

$\mathrm{V}(4,1)-\mathrm{O}(9,1)$	1.637 (3)	$\mathrm{V}(5,7)-\mathrm{O}(8,7)$	1.574 (3)
	1.666 (2)	$\mathrm{O}(11,7)$	1.773 (2)
$\mathrm{O}(4,7)$	$1 \cdot 902$ (3)	$\mathrm{O}(5,7)$	1.916 (3)
$\mathrm{O}(4,7)^{\prime}$	' 1.905 (3)	$\mathrm{O}(5,7)^{\prime}$	1.922 (3)
$\mathrm{O}(5,7)$	1.956 (2)	$\mathrm{O}(4,7)$	1.947 (2)
$\mathrm{V}(4,1) \cdots \mathrm{O}(4,1)$	$3 \cdot 563$ (3)	$\mathrm{V}(5,7) \cdots \mathrm{O}(6,7)$	2.739 (3)
		Bond angles Distance at $\mathrm{V}(4,1)$ the oxyg	between atoms
$\mathrm{O}(4,7)-\mathrm{V}(4,1)-\mathrm{O}(4,7)^{\prime}$		$150 \cdot 1$ (1) 3.679	3.679 (1)
$\mathrm{O}(4,7)$	$\mathrm{O}(5,7)$	75.7 (1) 2.36	$2 \cdot 368$ (4)
$\mathrm{O}(4,7)$	O(6,1)	97.2 (1) 2.68	2.680 (4)
O(4,7)	O(9,1)	100.6 (1) 2.72	2.727 (4)
$\mathrm{O}(4,7)^{\prime}$	$\mathrm{O}(5,7)$	75.5 (1) 2.36	2.364 (4)
$\mathrm{O}(4,7)^{\prime}$	$\mathrm{O}(6,1)$	96.6 (1) 2.67	2.672 (4)
$\mathrm{O}(4,7)^{\prime}$	$\mathrm{O}(9,1)$	99.5 (1) 2.70	2.709 (4)
$\mathrm{O}(5,7)$	$\mathrm{O}(6,1)$	133.4 (1) 3.32	3.327 (3)
O(5,7)	O(9,1)	117.0 (1) 3.06	3.068 (4)
O(6,1)	O(9,1)	109.6 (1) $2 \cdot 698$	2.698 (3)
$\mathrm{O}(4,1) \cdots \mathrm{V}(4,1) \cdots \mathrm{O}(9,1)$		168.5 (1) $5 \cdot 17$	(4)
Bond angles at $\mathrm{V}(5,7)$			
$\mathrm{O}(4,7)-\mathrm{V}(5,7)-\mathrm{O}(5,7)$		75.5 (1) 2.36	(4)
$\mathrm{O}(4,7)$	$\mathrm{O}(5,7)^{\prime}$	75.5 (1) 2.36	$2.364(4)$
$\mathrm{O}(4,7)$	O $(8,7)$	108.0 (1) 2.85	$2 \cdot 857$ (4)
$\mathrm{O}(4,7)$	$\mathrm{O}(11,7)$	147.7 (1) 3.57	3.573 (3)
$\mathrm{O}(5,7)$	$\mathrm{O}(5,7)^{\prime}$	146.9 (1) 3.67	3.679 (1)
O(5,7)	O(8,7)	101.7 (1) 2.71	$2 \cdot 715$ (4)
O(5,7)	O(11,7)	98.8 (1) 2.803	2.803 (4)
$\mathrm{O}(5,7)^{\prime}$	$\mathrm{O}(8,7)$	102.1 (1) 2.72	2.728 (4)
$\mathrm{O}(5,7)^{\prime}$	$\mathrm{O}(11,7)$	97.2 (1) 2.77	2.774 (4)
$\mathrm{O}(8,7)$	$\mathrm{O}(11,7)$	$104 \cdot 4$ (1) 2.64	$2 \cdot 647$ (3)
$\mathrm{O}(8,7) \cdots \mathrm{V}(5,7) \cdots \mathrm{O}(6,7)$		172.6 (1) 4.30	$4 \cdot 304$ (4)
Metal-metal separations$(<3.500 \AA)$		Metal-metal separations	
$\mathrm{V}(4,1)-\mathrm{V}(5,7)$	3.009 (1)	$\mathrm{V}(5,7)-\mathrm{V}(4,1)^{\prime}$	$3 \cdot 009$ (1)
$\mathrm{V}(4,1)-\mathrm{V}(5,7)^{\prime}$	$3 \cdot 011$ (1)	$\mathrm{V}(5,7)-\mathrm{V}(4,1)$	3.011 (1)
$\mathrm{V}(4,1)-\mathrm{V}(2,1)$	$3 \cdot 440$ (1)	$\mathrm{V}(5,7)-\mathrm{V}(2,7)$	$3 \cdot 288$ (1)
		$\mathrm{V}(5,7)-\mathrm{V}(2,4)$	$3 \cdot 489$ (1)

The different functions of the oxygen atoms can be summarized in the following way (see also Table 5). The four oxygen atoms $O(3), O(4), O(5)$ and $O(11)$ belong to three V-O polyhedra, and the mean values of the $\mathrm{O}-\mathrm{V}$ distances are in the range $1 \cdot 92-1.95 \AA$. For the $\mathrm{O}(2), \mathrm{O}(6), \mathrm{O}(7), \mathrm{O}(9)$ and $\mathrm{O}(10)$ atoms, which are common to two V-O polyhedra, the corresponding distances are $1.81-1.84 \AA$. The 11th oxygen atom is bonded to one vanadium atom only [$\mathrm{O}(8)-\mathrm{V}$ distance $1.574 \AA$].

If the cation and anion coordination numbers are considered, the formula of the compound can be written ${ }^{[6]} \mathrm{V}_{3}{ }^{[5]} \mathrm{V}_{6}{ }^{[3]} \mathrm{O}_{8}{ }^{[2]} \mathrm{O}_{11}{ }^{[1]} \mathrm{O}_{2}$.

The zigzag strings, built up by the edge-sharing oxygens $O(3), O(4)$ and $O(5)$, run infinitely in the \mathbf{b} direction, while $\mathrm{O}(11)$ takes part in finite edge-sharings in the $a c$ plane. This is reflected in the individual $\mathrm{O}-\mathrm{V}$ distances, which are very close to the mean values for the former, while the corresponding distances for $\mathrm{O}(11)$ range from 1.773 to $2.005 \AA$. This difference in function is also shown in the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ angles. The positions of the oxygens in relation to the planes formed by their metal coordination are visualized in the sums of the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ angles for the different oxygen atoms. The oxygens with $\mathrm{CN}=2$ have one short and one long oxygen-metal separation, but the averages differ very little for the different oxygens. The linearity of the vanadium coordination is reflected in the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ angle.

Table 6 gives a survey of averaged vanadium-oxygen distances for a large number of binary and ternary vanadium oxide compounds. The vanadium atoms are in different oxidation states, exhibiting various coordination numbers.

The mean values of the $\mathrm{V}-\mathrm{O}$ bond distances for the five different vanadium atoms in $\mathrm{V}_{3} \mathrm{O}_{7}$ are as follows: $\mathrm{V}(1) 1.947, \mathrm{~V}(2) 1.938, \mathrm{~V}(3) 1.834, \mathrm{~V}(4) 1.813$ and $V(5) 1.826 \AA$. These values are to be compared with the bond distances 1.94 and $1.81 \AA$, postulating 0.59 , 0.46 and $1.35 \AA$ for the $\mathrm{V}^{4+}(\mathrm{CN}=6), \mathrm{V}^{5+}(\mathrm{CN}=5)$ and $\mathrm{O}^{2-}(\mathrm{CN}=2$, average) radii (cf. Table 6). The agreement between calculated and observed distances is satisfactory if it is assumed that the V^{4+} ions are situated in the octahedra and the V^{5+} ions in the bipyramids (see also Casalot, 1972).
In $\mathrm{V}_{6} \mathrm{O}_{13}$ the averaged $\mathrm{V}-\mathrm{O}$ distances are 1.923, 1.930 and $1.942 \AA$, respectively, which might indicate a more disordered distribution of the V^{4+} and the V^{5+} ions ($c f$. however Goodenough, 1972).

Magnetic and electrical properties of $\mathrm{V}_{3} \mathrm{O}_{7}$

The magnetic susceptibility measurements were carried out by the Faraday method over the range 78 to 270 K (Fig. 3) with a polycrystalline sample, prepared as previously described. The absolute susceptibility value of the standard substance used, $\mathrm{HgCo}(\mathrm{SCN})_{4}$, was taken from Candela \& Mundy (1962). Corrections for the diamagnetism of the ion cores were introduced into the calculations according to Selwood (1956).

If it is assumed that the orbital contribution to the magnetic moment is negligible the effective moment per V atom for $\mathrm{V}_{3} \mathrm{O}_{7}$ should be $1.00 \mathrm{B.M}$. if the formula is $\mathrm{V}_{2}^{5+} \mathrm{V}^{4+} \mathrm{O}_{7}$. The mean value of several runs was 1.02 B . M. for the $\mathrm{V}_{3} \mathrm{O}_{7}$ sample, in good agreement with the calculated value for a distribution of formal oxidation states according to the observed structure

Table 5. The environment of the oxygen atoms in $\mathrm{V}_{3} \mathrm{O}_{7}$

Oxygen-metal	Distances (\AA)	Mean values	Metal-oxygen-metal angles$\left({ }^{\circ}\right)$		The sum of $\mathrm{V}-\mathrm{O}-\mathrm{V}$ angles $\left({ }^{\circ}\right)$
$\mathrm{O}(3,1)-\mathrm{V}(3,1)$	1.918		$\mathrm{V}(3,1)-\mathrm{O}(3,1)-\mathrm{V}(3,1)^{\prime}$	$145 \cdot 6$	
$\mathrm{O}(3,1)-\mathrm{V}(3,1)^{\prime}$	1.933	1.949	$\mathrm{V}(3,1)-\mathrm{O}(3,1)-\mathrm{V}(3,2)$	$106 \cdot 1$	
$\mathrm{O}(3,1)-\mathrm{V}(3,2)$	1.995		$\mathrm{V}(3,1)^{\prime}-\mathrm{O}(3,1)-\mathrm{V}(3,2)$	$106 \cdot 3$	358.0
$\mathrm{O}(4,7)-\mathrm{V}(4,1)$	1.902		$\mathrm{V}(4,1)-\mathrm{O}(4,7)-\mathrm{V}(4,1)^{\prime}$	$150 \cdot 1$	
$\mathrm{O}(4,7)-\mathrm{V}(4,1)^{\prime}$	1.905	1.918	$\mathrm{V}(4,1)-\mathrm{O}(4,7)-\mathrm{V}(5,7)$	$102 \cdot 9$	
$\mathrm{O}(4,7)-\mathrm{V}(5,7)$	1.947		$\mathrm{V}(4,1)^{\prime}-\mathrm{O}(4,7)-\mathrm{V}(5,7)$	$102 \cdot 8$	$355 \cdot 8$
$\mathrm{O}(5,7)-\mathrm{V}(5,7)$	1.916		$\mathrm{V}(5,7)-\mathrm{O}(5,7)-\mathrm{V}(5,7)^{\prime}$	146.9	
$\mathrm{O}(5,7)-\mathrm{V}(5,7)^{\prime}$	1.922	1.931	$\mathrm{V}(5,7)-\mathrm{O}(5,7)-\mathrm{V}(4,1)$	$102 \cdot 1$	
$\mathrm{O}(5,7)-\mathrm{V}(4,1)$	1.956		$\mathrm{V}(5,7)^{\prime}-\mathrm{O}(5,7)-\mathrm{V}(4,1)$	$101 \cdot 8$	$350 \cdot 8$
$\mathrm{O}(11,1)-\mathrm{V}(5,1)$	1.773		$\mathrm{V}(5,1)-\mathrm{O}(11,1)-\mathrm{V}(2,6)$	136.9	
$\mathrm{O}(11,1)-\mathrm{V}(2,6)$	1.977	1.918	$\mathrm{V}(5,1)-\mathrm{O}(11,1)-\mathrm{V}(2,1)$	$120 \cdot 8$	
$\mathrm{O}(11,1)-\mathrm{V}(2,1)$	2.005		$\mathrm{V}(2,6)-\mathrm{O}(11,1)-\mathrm{V}(2,1)$	$102 \cdot 1$	$359 \cdot 8$
$\mathrm{O}(1,1)-\mathrm{V}(1,1)^{\prime}$	1.618	1.840	$\mathrm{V}(1,1)^{\prime}-\mathrm{O}(1,1)-\mathrm{V}(1,1)$	$180 \cdot 0$	
$\mathrm{O}(1,1)-\mathrm{V}(1,1)$	2.061				
$\mathrm{O}(2,1)-\mathrm{V}(2,1)^{\prime}$	1.615	1.841	$\mathrm{V}(2,1)^{\prime}-\mathrm{O}(2,1)-\mathrm{V}(2,1)$	$175 \cdot 2$	
$\mathrm{O}(2,1)-\mathrm{V}(2,1)$	2.066				
$\mathrm{O}(6,1)-\mathrm{V}(4,1)$	1.666	1.826	$\mathrm{V}(4,1)-\mathrm{O}(6,1)-\mathrm{V}(2,1)$	$140 \cdot 8$	
$\mathrm{O}(6,1)-\mathrm{V}(2,1)$	1.985				
$\mathrm{O}(7,1)-\mathrm{V}(3,1)$	1.666	1.845	$\mathrm{V}(3,1)-\mathrm{O}(7,1)-\mathrm{V}(1,1)$	$151 \cdot 2$	
$\mathrm{O}(7,1)-\mathrm{V}(1,1)$	2.023				
$\mathrm{O}(9,1)-\mathrm{V}(4,1)$	1.637	1.808	$\mathrm{V}(4,1)-\mathrm{O}(9,1)-\mathrm{V}(1,1)$	$162 \cdot 3$	
$\mathrm{O}(9,1)-\mathrm{V}(1,1)$	1.978				
$\mathrm{O}(10,1)-\mathrm{V}(3,1)$	1.660	1.822	$\mathrm{V}(3,1)--\mathrm{O}(10,1)-\mathrm{V}(2,1)$	$171 \cdot 0$	
$\mathrm{O}(10,1)-\mathrm{V}(2,1)$	1.983				
$\mathrm{O}(8,7)-\mathrm{V}(5,7)$	1.574				

determination. The corresponding value of the Curie constant, computed from the expression $p_{\text {eff }}=2 \cdot 84 \mathrm{~V} / \mathrm{C}$, is $1.62 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~K} \mathrm{~mol}^{-1}(0.129$ unrationalized c.g.s. e.m.u. $\mathrm{K} \mathrm{mol}^{-1}$). This is in agreement with the C value $0 \cdot 14$ (c.g.s. units) reported by Kosuge (1967), but not with the magnetic data given by Tridot \& Tudo (1966).
It should be noted that $\mathrm{V}_{3} \mathrm{O}_{7}$, as well as $\mathrm{V}_{6} \mathrm{O}_{13}$, exhibits semiconductor behaviour (Toda, Kosuge \& Kachi, 1966). For $\mathrm{V}_{6} \mathrm{O}_{13}$ there exists a semiconductorsemiconductor transition at about 156 K (Kachi, Takada \& Kosuge, 1963). However, the members of the homologous series of Magnéli phases, $\mathrm{V}_{n} \mathrm{O}_{2 n-1}$, are better electrical conductors by several orders of magnitude than $\mathrm{V}_{6} \mathrm{O}_{13}$ and $\mathrm{V}_{3} \mathrm{O}_{7}$. Comparing $\mathrm{V}_{6} \mathrm{O}_{13}$ and $\mathrm{V}_{3} \mathrm{O}_{7}$ with each other, $\mathrm{V}_{3} \mathrm{O}_{7}$ shows a lower conductivity than $\mathrm{V}_{6} \mathrm{O}_{13}$. This behaviour seems to be in good
agreement with the assumptions of the above-mentioned charge distribution in these two oxides.

The authors wish to thank Dr Sven Westman for revising the English text. This investigation has been supported by the Swedish Natural Science Research Council.

References

Aebi, F. (1948). Helv. Chim. Acta, 31, 8-21.
Andersson, S. (1967). Ark. Kem. 26, 521-538.
Andersson, S., Galy, J. \& Wilhelmi, K. -A. (1970). Acta Chem. Scand. 24, 1473-1474.
Bachmann, H. G., Ahmed, F. R. \& Barnes, W. H. (1961). Z. Kristallogr. 115, 110-131.

Baglio, J. A. \& Gashurov, G. (1968). Acta Cryst. B24, 292-293.

Table 6. Comparison of averaged $\mathrm{V}-\mathrm{O}$ bond lengths, as a function of $C N$ and oxidation number
The e.s.d. column lists the largest standard deviation of an individual bond length (\AA) in each crystallographically independent polyhedron. The observed distances are compared with calculated values based on 'effective ionic radii' according to Shannon \& Prewitt (1969). For convenience, different CN's for oxygens are considered. The compounds with mixed oxidation numbers for vanadiums are given separately.

Compound	E.s.d.	${ }^{[6]} \mathrm{V}^{3+}$	${ }^{[5]} V^{4+}$	${ }^{[6]} V^{4+}$	${ }^{[4]} V^{5+}$	${ }^{[5]} \mathrm{V}^{5+}$	${ }^{[6]} \mathrm{V}^{5+}$	Reference
$\mathrm{V}_{2} \mathrm{O}_{3}$ (corundum)	0.001	2.010						Dernier (1970)
$\mathrm{V}_{2} \mathrm{O}_{3}$ (mon)	0.014	2.018						Dernier \& Marezio (1970)
$\mathrm{VO}(\mathrm{OH})$ (montroseite)	0.02	$2 \cdot 03$						Evans \& Mrose (1955)
$\mathrm{CaV}_{3} \mathrm{O}_{7}$	$\left\{\begin{array}{l}0.03 \\ 0.03\end{array}\right.$		1.89 1.89					Bouloux \& Galy (1973a)
$\mathrm{CaV}_{4} \mathrm{O}_{9}$	0.02		$1 \cdot 90$					Bouloux \& Galy (1973b)
VO_{2} (mon)	0.0012			1.9370				Longo \& Kierkegaard (1970)
CuVO_{3}	0.003			1.935				Rea, Bless \& Kostiner (1972)
VO_{2} (paramontroseite)	$0 \cdot 07$			1.97				Evans \& Mrose (1955)
β-VOSO 4	0.018			2.002				Kierkegaard \& Longo (1965)
$\mathrm{VOSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	0.003			2.001				Théobald \& Galy (1973)
$\mathrm{VOSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$	0.006			1.986				Ballhausen, Djurinskij \&Watson(1968)
KVO_{3}	0.01				1.73			Evans (1960)
$\mathrm{Cu}_{5} \mathrm{~V}_{2} \mathrm{O}_{10}$	$\left\{\begin{array}{l}0.005 \\ 0.005\end{array}\right.$				1.722 1.725			Shannon \& Calvo (1973)
YVO_{4}	$\left\{\begin{array}{l}0.005 \\ 0.008\end{array}\right.$				1.725 1.706			Baglio \& Gashurov (1968)
$\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$	0.005				1.726			Shannon \& Calvo (1972)
$\mathrm{Ca}_{2} \mathrm{VO}_{4} \mathrm{Cl}$	0.001				$1 \cdot 707$			Banks, Greenblatt \& Post (1970)
$\mathrm{V}_{2} \mathrm{O}_{5}$	0.004					1.828		Bachmann, Ahmed \& Barnes (1961)
$\mathrm{KVO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	$0 \cdot 02$					1.83		Evans (1960)
β-VOPO ${ }_{4}$	0.007					1.818		Gopal \& Calvo (1972)
$\alpha-\mathrm{CdV}_{2} \mathrm{O}_{6}$	0.03					1.83		Bouloux, Perez \& Galy (1972)
$\mathrm{CaV}_{2} \mathrm{O}_{6}$	0.03					$1 \cdot 81$		Bouloux, Perez \& Galy (1972)
$\mathrm{CuV}_{2} \mathrm{O}_{6}$	0.002					1.825		Calvo \& Manolescu (1973)
$\mathrm{CsV}_{3} \mathrm{O}_{8}$	0.020					1.816	1.920	Evans \& Block (1966)
$\mathrm{KV}_{3} \mathrm{O}_{8}$	0.08					1.84	1.89	Evans \& Block (1966)
	[0.008						1.917	
	0.008						1.913	
$\mathrm{V}_{10} \mathrm{O}_{28}^{6-}$ ion	0.009						1.932	Evans (1966)
	0.007						1.914	
	0.008						1.932	
$\mathrm{VO}\left(\mathrm{OCH}_{3}\right)_{3}$	$\{0.11$						1.91	Caughlan, Smith \& Watenpaugh (1966)
	0.07						1.92	Gely
$\gamma-\mathrm{LiV}_{2} \mathrm{O}_{5}$	$\left\{\begin{array}{l}0.03 \\ 0.005\end{array}\right.$		$1 \cdot 88$			$1 \cdot 83$		Galy, Darriet \& Hagenmuller (1971)
$\mathrm{V}_{6} \mathrm{O}_{13}$	$\left\{\begin{array}{l}0.005 \\ 0.004\end{array}\right.$			1.923 1.942			1.930	Wilhelmi et al. (1971)
	$\} 0.004$			1.947		1.834		
$\mathrm{V}_{3} \mathrm{O}_{7}$	0.003			1.938		1.813		Present work
	0.003					1.826		
CN for O^{2-}	Calcula	ted bon	distan	based	n 'effec	e ionic	dii'	Shannen \& Prewitt (1969)
II		1.99		1.94	$1 \cdot 71$	1.81	1.89	
III		$2 \cdot 00$		1.95	$1 \cdot 72$	1.83	$1 \cdot 90$	
IV		$2 \cdot 02$		$1 \cdot 97$	1.75	$1 \cdot 84$	1.92	

Ballhausen, C. J., Diurinskij, B. F. \& Watson, K. J. (1968). J. Amer. Chem. Soc. 90, 3305-3309.

Banks, E., Greenblatt, M. \& Post, B. (1970). Inorg. Chem. 9, 2259-2264.
Bouloux, J. C. \& Galy, J. (1973a). Acta Cryst. B29, 269275.

Bouloux, J. C. \& Galy, J. (1973b). Acta Cryst. B29, 13351338.

Bouloux, J. C., Perez, G. \& Galy, J. (1972). Bull. Soc. Fr. Minér. Crist. 95, 130-133.
Calvo, C. \& Manolescu, D. (1973). Acta Cryst. B29, 1743-1745.
Candela, G. A. \& Mundy, R. E. (1962). J. R. E. Trans. Instrum. 11, 106-109.
Casalot, A. (1972). Mater. Res. Bull. 7, 903-912.
Caughlan, C. N., Smith, H. M. \& Watenpaugh, K. (1966). Inorg. Chem. 5, 2131-2134.
Danielsson, L., Jonsson, O. \& Wilhelmi, K.-A. (1971). Acta Chem. Scand. 25, 911-918.
Dernier, P. D. (1970). J. Phys. Chem. Solids, 31, 2569-2575.
Dernier, P. D. \& Marezio, M. (1970). Phys. Rev. (B), 2, 3771-3776.
Evans, H. T. JR (1960). Z. Kristallogr. 114, 257-277.
Evans, H. T. JR (1966). Inorg. Chem. 5, 967-977.
Evans, H. T. Jr \& Block, S. (1966). Inorg. Chem. 5, 18081814.

Evans, H. T. J ${ }_{\mathrm{R}} \&$ Mrose, M. E. (1955). Amer. Min. 40, 861-875.
Galy, J.. Darriet, J. \& Hagenmuller, P. (1971). Rev. Chim. Min. 8, 509-522.
Goodenough, J. B. (1972). Les Oxydes des Eléments de Transition. Paris: Gauthier-Villars.
Gopal, R. \& Calvo, C. (1972). J. Solid State Chem. 5, 432-435.
Hambling, P. G. (1953). Acta Cryst. 6, 98.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kachi, S., Takada, T. \& Kosuge, K. (1963). J. Phys. Soc. Japan, 18, 1839-1840.
Kierkegaard, P. \& Longo, J. M. (1965). Acta Chem. Scand. 19, 1906-1914.
Kosuge, K. (1967). J. Phys. Chem. Solids, 28, 1613-1621.
Longo, J. M. \& Kierkegatid, P. (1970). Acta Chem. Scand. 24, 420-426.
McMaster, W. H., Kerr Del Grande, N., Mallet, J. H. \& Hubbell, H. H. (1969). Compilation of X-ray Cross Sections. UCRL-50714 Sec. II, Rev. 1.
Rea, J. R., Bless, B. W. \& Kostiner, E. (1972). J. Solid State Chem. 5, 446-451.

Fig. 3. The reciprocal magnetic susceptibility of $\mathrm{V}_{3} \mathrm{O}_{7}$ versus the temperature.

Selwood, P. W. (1956). Magnetochemistry, p. 78. New York, London: Interscience.
Shannon, R. D. \& Calvo, C. (1972). Canad. J. Chem. 50, 3944-3949.
Shannon, R. D. \& Calvo, C. (1973). Acta Cryst. B29, 1338-1345.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Theobald, F. \& Galy, J. (1973). Acta Cryst. B29, 27322736.

Thomas, D., Tudo, J. \& Tridot, G. (1967). C. R. Acad. Sci. Paris, 265, 183-184.
Toda, T., Kosuge, K. \& Kachi, S. (1966). Nippon Kagaku Zasshi, 87, 1311-1314.
Tridot, G. \& Tudo, J. (1966). C.R. Acad. Sci. Paris, 263, 421-424.
Tudo, J. \& Tridot, G. (1965). C.R. Acad. Sci. Paris, 261, 2911-2914.
Wilhelmi, K.-A., Waltersson, K. \& Kihlborg, L. (1971). Acta Chem. Scand. 25, 2675-2687.

